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ABSTRACT 

An operationally simple strength criterion for aniso- 

tropic materials is developed from a scalar function of two 

strength tensors.  Differing from existing quadratic approxi- 

mations of failure surfaces, the present theory satisfies the 

invariant requirements of coordinate transformation, treats 

interaction terms as independent components, takes into ac- 

count the difference in strengths due to positive and negative 

stresses, and can be specialized to account for different 

material symmetries, multi-dimensional space, and multi-axial 

stresses.  The measured off-axis uniaxial and pure shear data 

are shown to be in good agreement with the predicted values 

based on the present theory. 
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Nomenclature 

Strength tensor of the 2nd rank 

Strength tensor of the 4th rank 

cos 9, sin 8 

Plane hydrostatic tensile and compressive stresses 

Positive and negative shear strengths in 2-3 plane 

Positive and negative shear strengths in 3-1 plane 

Positive and negative shear strengths in 1-2 plane 

45-degree tensile and compressive strengths in 1-2 
plane 

V, V*       45-degree positive and negative shear strengths in 
1-2 plane 

h 
Fti 
m,n 

P. P' 

Q, Q' 

R, R' 

s, S' 

u, U' 

a. Stress components 

e. Strain components 

I 
I 
I 
I 
I 
I 
I 

X, X1 Tensile and compressive strengths along the 1-axis 

Y, Y» Tensile and compressive strengths along the 2-axis I 

Z, Z' Tensile and compressive strengths along the 3-axis 

T Combined tension and torsion strength 

T. Transformation equations for F. (Table I) 
l i • 

U..V..H. Transformation equations for F.. (Table II) 

I 
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Introduction 

For the purpose of material characterization and design, 

an operationally simple strength criterion for filamentary com- 

posites is essential.  Strength is an elusive and ambiguous 

term.  It covers many aspects associated with the failures of 

materials such as fracture, fatigue and creep, under quasi- 

static or dynamic loading, exposed to inert or corrosive en- 

vironments, subjected to uni- or multi-axial stresses, in 2 

or 3-dimensional geometric configurations, etc.  Failures of 

composites are further complicated by a multitude of indepen- 

dent and interacting mechanisms which include filament breaks 

and micro-buckling, delamination, dewetting, matrix cavitation 

and crack propagation.  An operationally simple strength cri- 

terion cannot possibly explain the actual mechanisms of fail- 

ures.  It is intended only as a useful tool for materials 

characterization, which determines how many independent strength 

components exist and how they are measured; and for design which 

requires a relatively simple method of estimating the load- 

carrying capacity of a structure. 

There have been numerous strength criteria in existence 

and additional ones are frequently being proposed.  In the ASTM's 

Composite Materials:  Testing and Design Mvarious strength cri- 

teria are used or alluded to by nearly one half of all the con- 

tributors.  Nearly all of them agree with one another with refer- 

ence to the principal strengths; i.e., those uniaxial and pure 
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shear test data measured along material symmetry axes. Those 

strengths are the intercepts of the failure surface with the 

coordinate axes in the stress-space. The disagreements among 

existing criteria usually occur in the combined-stress state-, 

i.e., in the space away from the coordinate axes of the fail- 

ure surface. Since reliable experimental data in the combined- 

stress state were almost nonexistent until very recently, no I 

serious attempt to challenge the validity of various failure j 

criteria has been undertaken.  Recent achievements in the auto- 

mation of testing in the combined-stress state and in the prepara- 

tion of unidirectional and laminated tubular test specimens of 

high quality have resulted in meaningful property data in the 

combined-stress state for the first time in the Western World. 

It is, therefore, timely to examine the validity and utility of 

existing strength criteria. 
J2] A number of Russian workers including Gol'denblat1- have 

tried to describe strength criteria using strength tensors. 

Their criteria were not operationally simple, and did not in- 

vestigate problems of material symmetries, coordinate trans- 

formations, and the associated invariants.  It is also a common 

Russian practice to apply the failure criteria to the entire 

laminates instead of the unidirectional constituent layers. 

Such practice imposes a less severe test on the validity of the J 

criteria because laminates have much weaker anisotropy than uni- 

directional layers.  Available Russian data do indicate that 1 

failure surfaces for many weakly anisotropic materials can be 
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approximated in stress-space by ellipsoids rotated and dis- 

placed from their principal axes.  The popular failure cri- 

teria in the Western World have been strongly influenced by 

HilP]who developed his strength theory for specially ortho- 

tropic materials by "generalizing" the Mises criterion for 

plastically incompressible isotropic materials.  As we will 

attempt to show later in this paper, such generalization is 

a risky endeavor and should be avoided.  Other workers in 

the West have employed the maximum stress and maximum strain 

theories.  Although the approaches are operationally simpler 

than those proposed by the Russian workers, they are in ef- 

fect curve-fitting schemes and have no analytic foundation. 

It is our intent to develop an operationally simple failure 

criterion from strength tensors.  Obvious advantages of this 

approach are that the invariance, the transformation proper- 

ties, the material symmetries, and commonality between various 

levels of spatial dimensions and multi-axial stresses can all 

be deduced from a general theory with established properties 

of tensors and without additional assumptions.  Unlike arbi- 

trary curve-fitting schemes which lack analytic foundation, 

our approach will have built-in generality and internal consis- 

tency. 

Basic Assumption 

The basic assumption of our strength criterion is that 

there exists a failure surface in the stress-space in the 
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following scalar form: 

f(ak) = F.a. + F.-o.c^ = 1 <la> 

where the contracted notation is used; and i, j, k = 1,...6; 

F  and F.. are strength tensors of the second and fourth rank, 
i     ID 

respectively.  Since the use of contracted notation does not 

follow a universal pattern, we will show in detail our usage 

in Appendix I.  Equation (la) in expanded or long-hand form is: 

Fl°l   +   F2°2   +   F3°3   +   VH   +   F5°5   +   F6a6 

+   *lA   +   2F12°ia2   +   2F13aia3   +   2F1H°1%   +   2F15°1°5   +   2F16ai°6 

+   F22°2   +   2F23°2a3   +   2F2^2%   +   2F25°205   +   2F26°2°6 

+   F33°3   +   2F34°3%   +   2F350305   +   2F360
3
a6 

+   F^°4   +   2F45%a5   +   2F«+6%°6 

+   F55°5   +   2F56a5°6 

♦*66"2-1 (lb) 

The linear term in a. takes into account internal stresses which 

can describe the difference between positive- and negative-stress 

induced failures.  The quadratic terms a.0. define an ellipsoid 

in the stress-space.  It is assumed that failure occurs when a 

stress vector reaches the failure surface.  The stress vector 

cannot extend beyond the failure surface.  Inside the surface, 
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no failure occurs and the material is elastic.  The material 

up to failure is independent of the loading path.  Then we 

know that F.. is symmetric when the strength potential func- 

tion f in Equation (1) is of class C2; i.e., 

F   =   92f  =   g2f  = F.. (2) 
ij   3a.3a.   3a.9a.    jl 

F. must be symmetric because a. is symmetric; this is shown 

in Appendix I.  In our basic assumption in Equation (1), we 

ignored higher order terms, e.g., term F£jj<
aiajaj<; 

in the 

strength criterion is not practical from the operational 

standpoint because the number of components in a 6th-rank 

tensor run into the hundreds.  In addition, having cubic terms, 

the failure surface becomes open-ended. 

Several features of our proposed strength criterion are 

as follows: 

(1) It is a scalar equation as compared with 6 simulta- 

neous equations required by the maximum stress or maximum strain 

criterion.  Interactions among all stress components are inde- 

pendent material properties; whereas interactions are not per- 

mitted in the maximum stress or maximum strain theories.  In 

fei 
criteria by quadratic approximations such as Hill's--1, interac- 

tions are fixed (not independent). 

(2) Since strength components are expressed in tensors, 

their transformation relations and the associated invariants 
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are well established.  In particular, the transformation 

relations in terms of multiple angles, similar to those deve- 

loped for the elastic stiffnessrJ, are useful tools for the 

understanding of strength tensors.  These relations are shown 

in Appendix II. 

(3)  The symmetry properties of the strength tensors and 

the number of independent and non-zero components can be rigor- 

ously described similar to other well-established properties of 

anisotropic materials, such as the elastic compliance matrix. 

The number of spatial dimensions and multi-axial stresses are 

determined by selecting the proper range of the indices among 

1 to 6.  General anisotropy and 3-dimensional space present no 

conceptual difficulty. 

(i+)  Knowing the transformation relations in Appendix II. 

we can readily rotate the material axes from F. to F.1 and F^. 

to F..' in Equation (1), or equivalently rotate in the opposite 

direction to change the applied stresses from a.   to a.1 when 

we want to study the off-axis or transformed properties.  Most 

existing criteria are limited to specially orthotropic materials, 

These criteria can only be applied by transforming the external 

stresses to the material axes.  Rotation of the material axes 

cannot be done because the transformations of the strength cri- 

teria are not known. 
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(5) Being invariant, Equation (1) is valid for all 

coordinate systems when it is valid for one coordinate sys- 

tem.  Such validity holds for curvilinear coordinates as well 

with only minor adjustments. 

(6) Certain stability conditions are incorporated in 

the strength tensors.  The magnitudes of interaction terms are 

constrained by the following inequality: 

F..F..-F..2>.0 <3> 
11 3 3    13 

where repeated indices are NOT summations for this equation; 

and i, j=l,...,6.  F.. is simply one of the diagonal terms. 

To be physically meaningful, all diagonal terms must be posi- 

tive; the off-diagonal or interaction terms may be positive 

or negative depending on the nature of the interaction but 

their magnitudes are constrained by the inequality in Equation 

(3).  Geometrically, this inequality ensures that our failure 

surface will intercept each stress axis.  The shape of the 

surface will be ellipsoidal.  The failure surface cannot be 

open-ended like a hyperboloid.  Equation (3) makes sure that 

it will not happen.  The same positive definite requirement 

of F.. is imposed on F..  The displacements of the ellipsoid due 
i] i 

to internal stresses are such that the origin remains inside the 

ellipsoid. 

(7) Finally, Gol'denblat^Jwas one of the first to suggest 

the use of strength tensors and proposed a general theory in the 
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following form: 

(F.a.)a + (Fi-a.a.)
3 + (^^a^.a^  + ... = 1 

He investigated a special case of 

a = 1,  ß = 1/2,  Y = -" • 

C+a) 

(4b) 

The + sign associated with the square root is awkward.  This, 

however, can be eliminated by simple rearrangement of this 

special case and we have: 

This relation is also more complicated than Equation (1).  The 

additional term does not introduce any more generality than the 

linear and quadratic approximation of Equation (1); i.e., there 

are 6 linear and 21 quadratic terms.  We believe that our approx- 

imation  is operationally simpler and will be investigated in 

detail in this paper. 

Symmetry Properties 

The symmetry properties of our strength tensors follow 

well established patterns of the diffusion^ and elastic!- pro- 

perties of anisotropic materials.  For a triclinic material J 

in 3-space: 

I 
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F. 
l 

(5a) 

F. . 
ID 

Fll  F12  F13  F14  F15  F16 

F22  F23 F2H     F25  F26 

F    F    F    F f33   3«+   35   36 

F    F    F 

F    F £55   56 

66 

(5b) 

As stated earlier, we are assuming that both strength tensors 

are symmetric. The number of independent strength components 

are 6 and 21 for Fi and Fi., respectively. 

If a material has some form of symmetry, we would expect 

that a number of interaction terms will vanish.  For specially 

orthotropic materials, for example, the off-diagonal terms in 
r5i 

Equation (5a) which are F^, Fg and Fg are expected to vanish.
1--* 

The coupling between the normal and shear strengths, e.g., F16, 

will also vanish if we assume that the change in the sign of 

shear stress in Figure 1 does not change the failure stress. 

I 
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By essentially the same reasoning, we can assume that shear 

strengths for a specially orthotropic material are all un- 

upled; i.e., F45=F56
=F

64
=0•  The couplings between normal co 

strengths, however, are expected to remain.  With these as- 

sumed symmetry relations, the number of independent compo- 

nents reduced to 3 and 9, as follows: 

F. . 
13 

3 
Fi   -  j 0 

0 

0 

F    F    F, „  0   0   0 rll   12   13 

F22  F23  °   °   ° 

F33  °   °   ° 

F4H °   ° 

F55 ° 

66 

(6a) 

(6b) 
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From the transformation relations in Appendix B, we can easily 

show that for a generally orthotropic material created by a 

rotation about the 3-axis, the number of nonzero components 

are as follows: 

F. * 
l 

V 
V 
V 

0 

0 

(7a) 

V 

F. .' 
ID 

F      '       F      '       F      ' rll 12 13 

F      '      F      ' 22 23 

F      ' 33 

0        0 F16« 

0 0        F26' 

0        °        F36' 

F      'F      '0 ri+4     45 

F      '    0 55 

F      ' 66 

(7b) 

I 
I 
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Although there are 4 and 13 nonzero components in Equation (7), 

the number of independent components remains the same as those 

in Equation (6); i.e., 3 and 9 respectively. 

For a transversely isotropic material with plane 2-3 as 

the isotropic plane, we can immediately state that indices 

associated with this plane are identical; i.e., 

F2 = F3'  F12 = F13'  F22 = F33>  and F55 = F66        (8> 

We can also state that the two states of stress in Figure 2 

are identical and should yield identical failure stresses, then 

FiMl = 2(F22 " F23} (9> 

The number of independent components reduced to 2 £ 5 for F£ and 

F... respectively.  The number of nonzero components for this 

transversely isotropic material remain    3 and 9 as in Equation 

(6).  If a rotation of the 3-axis is introduced the nonzero com- 

ponents of this generally transversely isotropic material also 

increase to H  and 13 for F.' and F.. •, respectively, as those 

in Equation (7). 

By extending the relation of Equation (8) and (9) to the 

other two orthogonal planes, we obtain for isotropic materials 

1 and 2 independent components for F. and T±..      If internal 

stresses or Bauschinger's effect is ignored, the remaining F. com- 

ponent will vanish.  If a failure by hydrostatic stresses is 

assumed to be inadmissible, the two independent components of 

F.. become related by: 
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(F11 + F22 + F33> + 2(F12 + F23 + F31> = ° 
(10a) 

For isotropic materials, indices 1, 2 and 3 are identical, then 

Equation (10a) becomes: 

F12 = -Fll/2 
(10b) 

The three shear components are also identical and by virtue of 

Equation (9), we obtain 

FH* S F55 = F66 = 2(F11 " F12) = 3F11 
(11) 

Thus, for isotropic materials which are plastically incompres- 

sible and have zero internal stresses, the strength tensors are: 

Fi 3 {0} 

F. . = F 
l]    11 

•1/2 

1 

•1/2 

■1/2 

1 

0 

0 

0 

3 

0 

0 

0 

0 

3 

0 

0 

0 

0 

0 

3 

(12a) 

(12b) 

It is also useful to express the invariant components of 

the strength tensors when the axis of rotation is about the 

3-axis as outlined in Appendix II* 
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(13a) 

F. . = 
13 

U. 

L 

u. 

u. 

0 

0 

0 

0   0 

0  0 

33 
0 

W. 

0 

0 

W. 

0 

0 

0 

0 

0 

4U, 

(13b) 

Relative strengths between two Isotropie materials can be 

made rather directly because there is only one strength para- 

meter associated with each isotropic material; e.g., F±1  in 

Equation (12).  We are not aware of any easy and direct com- 

parison that can be made between two anisotropic materials, 

or between anisotropic and isotropic materials.  Strength ten- 

sors are different from the elastic stiffness matrix Q£j of a 

unidirectional composite which can be related directly to the 

quasi-isotropic constants of laminates .W For laminated compo- 

sites, it may be easier to deal with a failure criterion in 

terras of strain components.  Equation (1) can be rewritten as 

follows 
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;(ek) = G. s. + G.-e.e. = 1 (11) 

where 

G-  =  Fn,Cm-i i   m mi 

G.. = F  C .C . 13    mn mi n3 

C. = Elastic Stiffness Matrix 
ID 

When a state of plane stress is applied to the 1-2 plane, 

a triclinic material will appear as follows: 

F. . = 
i: 

F     F 
*11    12 

22 

16 

26 

66 

(15) 

There are a total of 9 independent strength components.  For 

specially orthotropic materials, 

F6 = F16 = F26 = ° 
(16) 

we have 2 and 4 independent components for F. and T^ , respec- 

tively. 

Engineering Strengths 

The relations between engineering strengths and strength 

tensors are similar to those between engineering constants and 

the components of the elastic compliance. Typical relations 

for the latter are: 
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Ell = 1/S11»  G12 = 1/S66 
(17) 

where E.. is the longitudinal stiffness; G
12> 

the longitudinal 

shear modulus; S.., the components of the compliance matrix. 

An important point that has often been overlooked is that 

engineering constants are NOT components of a Hth rank tensor; 

while S.. are components of such a tensor within a correction 

factor caused by use of the contracted notation as described 

in Appendix I. 

Like engineering constants, engineering strengths are 

those strength parameters which are relatively simple to mea- 

sure in the laboratory.  Although they are not components of a 

tensor, they can be related to the components of F. and F.. 

through relations which we will establish and which turn out to 

be similar to those in Equation (17). 

Let us, for example, impose a uniaxial tensile stress on 

a uniaxial specimen oriented along the 1-axis.  We can measure 

the tensile failure and designate the failure stress X.  Simi- 

larly, we can experimentally obtain a uniaxial compressive 

strength along the same axis and can designate it X'.  From these 

two simple experiments, we obtained two engineering strengths X 

and X1.  They can be related to the strength components F., and F,, 

through Equation (1) if we let i = 1 only; i.e., 

Fll°l + Vl = 1 (18) 

When 0. = X, Equation (18) becomes 
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11 + XF1 = 1 

When a     =   -X', Equation (18) becomes 

X|2F1;L - X'F1   = 1 

Solving Equations (19) and (20) simultaneously, we obtain 

(19) 

(20) 

11   XX' 

1   X   X 
(21) 

Through uniaxial tensile and compressive tests imposed along 

the 2- and 3-axis, we obtain 

22   YY 

1 

, , 12        Y   Y' 

_   F  = I - i 
i » r •?   v.        z' 

(22) 

(23) 
33   ZZ' ' *3   Z 

where Y and Y' are the uniaxial tensile and compressive strengths 

along the 2-axis; Z and Z', those along the 3-axis. 

By imposing pure shear in the 3 orthogonal planes we can 

obtain 

(24) 

(25) 

(26) 

44   QQ' 

'55 = RR« ' F5 

1 
Q 

1 
Q' 

1 
R 

1 
R' 

66   SS 
1_   F  = k  -■ I 

' '  6   S   S* 
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Where Q and Q' are positive and negative pure shear strengths 

along the 2-3 plane; R and R', those along the 3-1 plane; S 

and S', those along the 1-2 plane. 

We have thus far established all 6 components of F£ and 

all the diagonal components of F.. j .  The off-diagonal compo- 

nents are related to the interaction of two stress components 

in the strength criterion.  For example, the experimental deter- 

minations of F12 and Flg require combined stresses.  Simple 

uniaxial or pure shear tests will not be sufficient.  Most 

existing strength criteria do not require combined stress tests 

because the interactions term such as F12 is assumed to be a 

dependent quantity or F16 is zero.  Strength component F12 can 

be determined by an infinite number of combined stresses; only 

a few simple combinations will be discussed here.  If we impose 

a biaxial tension such as 

n (27a) 
CT1 = G2 = P> °3 = % = ü5 = °6 - ° 

Substitute this state of combined stresses into Equation (1), 

we obtain 

p2(Fll + F22 + 2F12} + P(F1 + V = X 

Solving for F12, we obtain 

x    2P  L 

(27b) 

(27c) 
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We can determine F23 and F31 by imposing biaxial tension or 

compression in the 2-3 and 3-1 planes, respectively. 

Strength component F16 can be determined by a tension- 

torque combination; e.g., 

°1 = °6 = T'  a2 = °3 = % = °5 = ° 

This is equivalent to letting i = 1 and 6 in Equation (1), 

and we have 

T!<ru ♦ F66 ♦ 2F16) ♦ T(F1 t P.) - 1 <28b> 

(28a) 

by rearranging, 

'x. ■-M1 - «£ - *• ♦ I - i' - l2(s^ * sr-'] 
(28c) 

2T 

This experiment can be readily performed by testing a tubular 

specimen with the tube axis along the 1-axis.  Component F2ß 

can be determined by imposing tension-torque on a tubular speci- 

men with the 1-axis along the circumference of the tube.  Similar 

to the case of biaxial tension where the ratio of the two normal 

stresses may be arbitrary, the tension-torque combination can 

also have ratios different from that of Equation (28a), where the 

ratio was unity.  These different ratios will provide additional 

determinations of the interaction terms.  The redundant measure- 

ments can be used to establish the range of validity and accuracy 

of our initial assumption stated in Equation (1).  If the tube 

axis coincide with the material symmetry axis, e.g., the filament 
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axis of a unidirectional composite runs along the longitudinal 

direction of the tube, F16 in Equation (28c) must be zero in 

this specially orthotropic orientation.  Then we can easily 

establish the relation between the imposed combined stresses 

T and the principal strength components X, X' and S.  S1 is 

equal to S for specially orthotropic material based on the 

relations in Equations (7a) and (26). 

Many Russian workers recommend the use of 45-degree speci- 

mens for the determination of interaction terms such as F12. 

This can be done by letting: 

°1 = °2 = °6 = U/2'  °3 = % = °5 = ° (29a> 

where U is the tensile strength of a 45-degree off-axis speci- 

men.  Note that the combined stresses in Equation (29a) are applied 

to the symmetry axes of a specially orthotropic material.  This 

state of stress is equivalent to a uniaxial tensile stress applied 

to a reference coordinate system rotated 45 degrees from the 

material symmetry axes.  This is why U can be considered as an 

engineering strength.  Care must be exercised in the actual ex- 

periment of loading a 45-degree specimen so that the shear cou- 

pling effect due to S16 is minimized.  By introducing Equation 

(29a) into Equation (1), we have 

2 

v- (Fu + F22 + F66 ♦ 2F
12> + !<Fi +V ■ V 

where F  , F  ; and F„ vanish because of the assumed special wu     16 '  26       6 

orthotropy.  Now we can obtain F12 by this test: 

(29b) 
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12 Mi U 
1 (I 
2 VX X' + Y *.> 

4 ^XX'   YY'   SS'7J 
(29c) 

A similar relation for the compressive strength U1 can be 

established.  A similar relation for the compressive strength 

U' of a 45 degree off-axis unidirectional specimen is as fol- 

lows : 

°1 = °2   *   °6 = -UV2'  a3 " % = °5 = ° 
(30a) 

2 

TT (F11 + F22 + 2F12 + F66) " r-(Fl + V = * 
(30b) 

Then we can find 

12 U ?*»♦£•<* 
1 
X' 

2 
U'  , 1  + _L_ + L_ XX'   YY'   s2 

+ Y 

)] 

*.> 

(30c) 

By comparing Equation (29b) and (30b), we can derive the fol- 

lowing relations between U and U1: 

2(— -  —  )=F  +F ^VU   U' '    1 
= 2T 

2     1 
(31a) 

UU 
Fll + F22 + 2F12 + F66 = 4(U1 - U3) 

(31b) 
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where T  is the first invariant of F£ which is shown in Appen- 

dix II, Equation ( 91) and Figure 3 of this paper; while the 

difference on the left-hand side Equation (31b) is not invar- 

iant which can be seen from Equation (90 ). 

Let V and V be the positive and negative shear strengths 

of a «+5 degree off-axis unidirectional specimen, then analogous 

to the relations in Equations (29) through (31) for uniaxial 

stresses , we have 

+ o1 = -a2 = V,  a3 = % = a5 = aß = 0 (32a) 

This state of stress is applied to the symmetry axes oriented 

at + 45 degrees from the positive shear stress V.  The same state 

of stress exists when a negative shear stress (-V) is applied to 

a -45 degree off-axis specimen.  Substituting Equation (32a) into 

(1), we have 

V2(FX1 + F22 - 2F12) + V(FX - F2) = 1 

Then we can establish 

(32b) 

2V: 
F12 = " -^2 [1 " V(X " X' - Y + Y'> 

V2(_L_ + -!_)] (32c) V 4x'   YY' }i 
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Similarly, when 

+ ox   = -o2 = -V,  a3 = % = o5 = o6 = 0 (33a) 

We have 

V2 ( F., + F22 - 2F12) - V(F1 - F2) = 1 

12 2V' 
1 + V(i -, - ± + ±) - V ( .2r_L 

XX YY r) 

(33b) 

(33c) 

From Equations (32b) and (33b) we can derive the following re- 

lations between V and V: 

-, = F. F  = 2T 
2     2 

(34a) 

—i— = T   + F   - 2F 
VV    11    22     12 

(34b) 

All these relations are helpful in determining components 

of F.. and their transformed quantities as well as the internal 
ID 

consistency of this present theory.  From Equations (31b) and 

(34b), we can derive an invariant relation: 

VV uu r = ^(u^ - uu> 
(35) 

We will describe later in this paper how component F12 for a 

given composite system, e.g., the graphite-epoxy composite, 

can be best determined.  Suffice to say, F12 is a very sensi- 

tive and critical quantity in this proposed theory and must be 

clearly understood by its users. 
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Quadratic Approximations 

Using the framework and notation of our approach, we can 

compare the forms of many existing quadratic approximations of 

r 31 
the strength criteria.  The Hill criterion  ' which is limited 

to specially orthotropic 3-dimensional bodies, with plastic 

incompressibility and without internal stresses, can be ex- 

pressed in the following forms: 

{0} 
(36) 

H 

F 
1(1     +   X 

2(F + T7 

i 
Y 

iri     +  1     _   1   )        0 

' ¥z7 + br~ &      °      °      ° 

I7 0        0 0 

"~2" 

(37) 

? 
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Since the Hill criterion is obtained by generalizing the Mises 

criterion, 3 interaction terms become dependent on the diagonal 

terms.  Such arbitrary generalization resulted in only 6 inde- 

pendent strength components in F.. instead of 9.  The Mises 

criterion can be recovered from Equation (37) if we let 

o o o o o o 
X  = Y  = Z  = Q /3 = R /3 = SV3 (38) 

Then Equation (37) becomes the same as Equation (12) with F.., 

2 
replaced by 1/X .  Substituting the latter result in Equation 

(1), we have 

or 

2    2    2 
Bl + °2   + °3 " °ia2 

o   o     -   o   a 
2 3    3 1 

+ 3(o* + o25   +   o*> 

2 2 2 (a1 - a2)  + (a2 - ag)  + (o3 - a1) 

0 0 0 0 0 
+ 6(a^ + ot   + oZ)   = 2X^ = 6S 

4      0      D 

(39) 

(40) 

Note that plastic incompressibility is satisfied in Equation 

(40). 

Some authors have tried to generalize the quadratic approxi- 

mation derived from Equation (37) by introducing floating or ad- 

justible constants for the off-diagonal or interaction terms 

such as C7] 

F" = a(? + ? - ?' (41) 
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The use of constant "a" implies that F12 is proportional to a 

particular function of the engineering strengths which is in 

general not the case.  As stated earlier, the generalization 

of the Hises criterion to describe special orthotropy lacks 

analytic foundation.  Further generalization from the form 

of Equation (37) by means of adjustible constants of propor- 

tionality may lead to unnecessarily restrictive, if not erron- 

eous, strength criteria.  The use of arbitrary constants, like 

"a" in Equation (41), does not ensure internal consistency and 

invariance under transformation. 

In fact, when the strength criterion based on Equation (37) 

is specialized to plane stress applied to a unidirectional com- 

posite with the longitudinal strength X in the 1-direction, the 

two transverse strengths are equal; i.e., 

Y = Z = Transverse Strength U2) 

With this additional assumption, we can derive the often-used 

strength criterion 

? " "   Y2   S2 

Note that this criterion is biased; i.e., the interaction term 

contains only the longitudinal strength.  If we are not careful 

and apply the plane-stress strength criterion to the same uni- 

directional composite but with filaments running in the 2-direction, 

we will obtain the following criterion: 
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1_ 
.2 

al°2 (44) 

This latter equation is not a correct specialization of the 

strength tensor in Equation (37) because the equivalent rela- 

tion of Equation (42) no longer holds; i.e., 

X 4 Z (45) 

For the same reason, the plane-stress strength criterion cannot 

be applied to a laminate because of the strength transverse to 

the plane of the laminate is an independent engineering strength, 

entirely unrelated to the in-plane engineering strength; i.e., 

X~, Y, and Z  are all independent where the bar designates the 

equivalent engineering strength of a laminate. 

With the same number of assumptions as Hill's, i.e., plane 

stress, special orthotropy, and no internal stresses, we can 

correct the  deficiencies of Equation (43) by using the proper 

interaction term F12 from Equation (27c) or (29c) or other combined 

2 
stress engineering strengths.  Instead of 1/X  for the interaction 

term , we have , 

12 2  2 
P 

or 

12 

2    2 ' 
X    Y 

U  2    2    2 ^ X^   Y    S 

(46) 

(47) 

These relations are derived from Equations (27c) and (29c), res- 

pectively.  An additional engineering strength, P or U, is 
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needed to complete the strength criterion.  By making one 

more assumption, such as P = Y in Equation (46), we can ob- 

tain the often-used relation of Equation (43).  The same im- 
[3 n 

provement can be made to the strength criterion of Hoffman , 

i.e., change the interaction term 1/X2 to that in Equation (27c) 

or (29c). 

Transformation of Strength Tensors 

In order to gain insight into our strength criterion, it 

is helpful if we examine the transformed properties of the 

strength tensors.  We will show graphically the transformed 

properties of unidirectional graphite-epoxy composites with 

the following engineering strengths: 

X 

X' 

Y 

Y' 

S 

12 

Longitudinal Tension = 150 ksi 

Longitudinal Compression = 100 ksi 

Transverse Tension =  6 ksi 

Transverse Compression = 17 ksi 

Longitudinal Shear = 10 ksi 

(48) 

±/FllF22 = i'0008084 

Assuming that the graphite unidirectional composite is specially 

orthotropic and under plane stress, the principal strength com- 

ponents are: 

F. 
l 

1 
X 

1 
*   X' 

1 
Y 

1 
Y» 

( 49 ) 
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Fll   F12   ° 

F22   ° 

66 

1 
XX' 

12 

1 
YY1 

(50) 

where F19 is imposed by the stability condition of Eq. (3). 

The transformation of the strength tensor from Equation 

(91) are: 

Tl = (F1 + F2)/2 = ,0523 

T2 = (Fx - F2)/2 = -.0556 (51) 

T3 = F6 = ° 

Thus , 

F ' = .0523 - .0556 cos 21 

F » = .0523 + .0556 cos 21 
2 

(52) 

F ' = -.1112 sin 28 
6 

The graphical representation of Equation (52) is shown in Figure 

3. Similarly the transformation of T^ can be obtained directly 

from the relations in Equation (92) that 

= ¥(3F11 + 3F22 + 2F12 + F66) 

= !<F11 " F22) =-'°0*87 

= l(Fll + F22 - 2F12 - F66) = 

= .00515 

(53) 
.00022 
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% " l(Fll + F22 + 6F12 - F66) = -00059 

°5 = l(Fll +' F22 " 2F12 + F66) = -°0228 

(53) 

The transformed components are 

F  ' = (5.15 - 4.87 cos 26 - 0.22 cos 46) x 10 

F  * = (0.59 + 0.22 cos 46) x 10 

F  ' = (9.12 + 0.87 cos 46) x 10 
0 D 

:os •+«; x j.u 

-3 

-3 

-3 

(54) 

F  ' = (0.49 sin 26 + 0.44 sin 48) x 10 
lo 

Components F  ' and F„ ' can be obtained from F^1 and Flg', 

respectively, by changing 6 in Equation (54) to -(6+90).  Graphic 

representations of F..' are shown in Figure 4. 

The transformed properties shown in Figures 3 and 4 are 

typical of 2nd and 4th rank tensors.  The invariants associated 

with this particular transformation, i.e., a rotation about the 

3-axis, are also shown as horizontal lines. 

The solid lines represent the upper bound of F12, i.e., 

T       = +.0008, and the dashed lines, the lower bound, i.e., F12 = 

-.0008.  The present theory can only admit limited values of 

F._ for the stability reason depicted by Equation (3). 

Similar constraint must be imposed on all the remaining 

interactions on off-diagonal terms of F...  If the magnitude of 

F.„, for example, exceeds the limits indicated by Equation (3), 

the resulting yield surface may become hyperboloidal.  The off- 

axis properties in case of a F.. outside the stable range may 
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have several maxima or minima which do not look like the expected 

well-behaved functions.  In other cases, the off-axis properties 

.[9] 
"blow up" at certain angles.  This was shown by Ashkenazi 

when he substituted an unconstrainted value for F12 into the 

[2] ... 
theory proposed by Gol'denblat and Kopnov   .  Thus the initial 

assumption of Equation (1) in this paper and that employed in 

Reference 2 must be further constrained by some stability considera- 

tions.  If experimental data do not agree with the predictions 

and constraints of our theory, we can modify the initial assump- 

tions, such as the change in the functional form of Equation (1) 

or the inclusion of high order terms, but we are not at liberty 

to relax the stability requirement. 

The determination of the value of F±2   can be achieved through 

infinite number of combined-stress states, shown earlier in this 

paper.  The Russian workers[2,9] suggested the use of off-axis 

tests, with the 45-degree specimen as the most popular choice. 

It is interesting to observe the effect of these 45-degree uni- 

axial (U,U'), pure shear (V,V) and hydrostatic (P,P') tests on 

the value of F12>  In Figure 5, we used the first five data for 

graphite-epoxy composites listed in Equation (49) and various 

values of F 9.  These values are substituted into Equations (27) 

and (29) through (33) to obtain the curves in Figure 5 for 

various off-axis properties U , U' , V, V', P and P'.  Curves 

such as U, P and V are nearly horizontal which means that those 

tests should not be used for the determination of F12.  A small 

inaccuracy in the values of U, for example, can induce a large 

change in F  .  Of the remaining curves, the V (positive shear 
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of a 45-degree specimen) gives the most reliable determination 

of F12. 

Also shown in Figure 5 are the limits imposed by the 

stability conditions of Equation (3).  For the remaining part 

of this paper, we will use a F12 value close to its upper bound, 

say, +.0008, since the positive shear strength for our experi- 

mental measurement of 45-degree specimen is about 20 ksi.  It 

should be emphasized that Figure 5 is valid for a particular 

composite with engineering strengths shown in Equation (49). 

For other composites, we believe that similar study on the 

sensitivity of off-axis or other combined-stress tests on F12 

should be made before a reasonable value of F12 is decided upon. 

Off-Axis Properties 

If we want to obtain the off-axis uniaxial strengths, we 

simply use the transformed strength tensors in Equation (18); 

i.e. , 

Fll'°l + Fl'al - X = ° (55) 

The transformed strength tensors are shown in Figures 3 and 4. 

At »f5 degrees, for F12 = +.0008 for example, 

F  ' = .00537 
(56) 

F'  = .05225 

Solving the quadratic equation, we obtain two roots: 
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o  = +9.61 and -19.35 ksi (57) 

If the process is repeated for other angles between zero and 

90 degrees, we obtain the off-axis uniaxial properties shown in 

Figure 6a. Like the transformed Young's modulus E1:L' > and off- 

axis uniaxial properties, they do not follow the transformation of 

any known tensors.  They are therefore by definition not tensors. 

As another comparison, we also show in dashed lines in 

Figure 6bthe prediction of the maximum stress theory which can 

be expressed analytically by one of the following 6 criteria 

whichever happens to be minimum for a given state of plane stress: 

For uniaxial tensions: 

o  = X/m2, Y/n2, or S/mn (58) 

For uniaxial compression: 

a1 = X'/m2, Y'/n2, or S'/mn (59) 

where m = cos 6, n = sin 8.  The values of the engineering 

strengths are the same as those shown in Equation (49), except 

that only 5 of the 6 strengths are needed for the maximum stress 

theory.  The biaxial tension P, for example, is assumed to be 

derivable from the 6 strength criteria shown in Equations (58) 

and (59). 

The off-axis pure shear properties can also be obtained by 

solving the following quadratic equation for various values of 

angle 6; 
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'„• °l * V °s - 1 ■ ° (60) 

Where the transformed strength tensors can be obtained from 

Figures 3 and 4.  The results for the graphite composite with 

the same principal strengths in Equation (49) are shown in 

Figure 7a  The corresponding predictions based on the maximum 

stress theory are shown as dashed lines in Figure 7b and they 

are derived from the following relations: 

For positive shear: 

oe = X/2mn,  Y'/2mn, or S/(m2-n2) (61) 
D 

For negative shear: 

ae = X'/2mn,  Y/2mn, or S»/(m2-n2) (62) 
6 

Although we have not shown the strength prediction based on 

the maximum strain theory in Figures 6 and 7, it is very simi- 

lar in nature to the prediction of the maximum stress theory. 

There will be 6 simultaneous criteria for the case of plane 

stress.  The lowest predicted strength among the 6 relations 

will govern for each state of combined stresses.  The final 

criterion will consist of segmented curves as those shown in 

Figures 6 and 7.  Each stress or strain criterion is unaffected 

by the presence or absence of other stress or strain components; 

i.e., there is no interaction among the stress or strain com- 

ponents . 
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From the shapes of the off-axis uniaxial and shear curves 

in Figures 6 and 7, we should be able to fit available test data 

very closely.  Data points are shown in the Figures.  Without 

the analytic foundation contained in the initial postulate in 

Equation (1), it is very difficult, if not impossible, to de- 

duce the transformation properties associated with the strength 

of a composite from experimental data like those shown in Fig- 

ures 6 and 7.  The strength criterion proposed here certainly 

contains greater flexibility than most existing criteria while 

it maintains the necessary generality in spatial dimensions, 

materials symmetries, combined-stress state invariance, and, 

above all, operational simplicity. 

Transverse Shears 

As applications of composites for primary structures in- 

crease, the cross-sectional thickness is also increasing.  The 

effects of transverse shears a^  and ag in a thick laminate 

have been the subject of several recent articles.  If we 

confine ourselves to unidirectional layers oriented at various 

angles through a rotation about the 3-axis from the specially 

transversely isotropic orientation, our strength tensors are 

those in Equation (6), (8) and (9) which in terms of engineer- 

ing strengths are as follows: 
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1        1 
X   "   X'- 

1        1 
Y   "   Y' 

1        1 
Y    -    yl 

0 

0 

0 

(63a) 

F. . 
11 

1 
XX' 

F12 F12 
0 0 0 

1 
yyl F23 

0 0 0 

1 
yyl 0 0 0 

2( 
1 

yyl 

1 

0 

0 

1 
s'2 

(63b) 
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We have assumed in the above that the 2-3 plane is the iso- 

tropic plane.  Only the interaction terms F12   and F23 are 

unfamiliar quantities.  There is however no intrinsic diffi- 

culty associated with their experimental determination.  From 

the principal components of Equation (63) we can readily find 

the components of the strength tensors for any orientations 

about the 3-axis.  The off-symmetry tensors will have more 

nonzero components than the above.  The exact number of the 

nonzero components are shown in Equation (7).  Components F12 

and Fiq are equal in Equation (63) which refers to the symmetry axes 

But for off-symmetry orientations, F12' and F13' are in general 

different.  Their transformation relations are also different 

as can be seen in Appendix II. The same can be said about the 

isotropic relations among the components associated with the 

2-3 plane; viz., F22, F23, F33, and F^.  The relations shown 

in Equation (63) are valid only in the symmetry axes. 

Application of our strength criterion to a 3-dimensional 

transversely isotropic material can be achieved in two ways. 

First, we can transform the stress components to the material- 

symmetry axes, in which case Equation (1) can be expanded con- 

taining only the independent and nonzero components shown in 

Equations (63), we have 

F,a '+ F„(a • + a ') + F..o ' 1"1   '2V"2 11 1 
+ F„„(o '2 + a »2 + 2a.'2) 22v 2 

+      F66(CV2   +   a5*2)   +   2F12(öl'a2,+   W*   +   2F23(<Va3'    "   2V    > 

(64) 
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Conceptually, this strength criterion is no more difficult 

than that for the plane stress.  The most difficult job is 

the analysis that determines the additional stress components 

a   ,   a   ,   and  or.  Once they are known the strength criterion, 
3   4 -> 

such as Equation (6'+), can be applied directly. 

The other method of applying the strength criterion is 

to leave the stress components unchanged but rotate the mat- 

erial symmetry axes.  We must then find out the transformed 

strength tensors, which will appear like Equation (7) in their 

nonzero components.  Since we will have more strength compo- 

nents in the generally transversely isotropic configuration 

than the 7 independent components in Equation (64), Equation 

(1) when expanded for this case will have more terms.  There 

will be the following 17 terms to be exact: 

F1'a1 + F2'o2 ♦ F3'a3 + F6'a5 + F^'cJ + F^'c
2 t F 33' a

2 

+ F^'% + F55,CJ5 + F66,ff6 + 2F12,01°2 + 2F23,02°3 

+ 2F3l'03ai + 2F16,fflff6 +.2F26,02°6 + 2F36*a3°f 

+ 2F45?%a5 = l 
(65) 

Aga in, this strength criterion is conceptually simple-  Compo- 

nents F ' and F..' are obtained by transforming tlu- principal 
i      i: 

components in Equation (63). 
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Conclusions 

An operationally simple strength criterion can be 

developed using a scalar function of two strength tensors. 

This criterion is an improvement over most existing quadratic 

approximations of the yield surface because of the use of 

strength tensors.  We can extend our working experience of 

elastic moduli and compliance to the strength criterion.  The 

transformation relations and the associated invariants are well 

known.  The number of independent and nonzero strength compo- 

nents for each material symmetry are also simple extensions of 

those governing the elastic properties of anisotropic materials. 

Spatial dimensions of the body and the states of combined stresses 

can be treated in a unified manner.  Although available experi- 

mental data in combined-stress states are only tentative, our 

strength criterion should fit them better than most, if not all, 

existing curve-fitting schemes.  We are in the process of gener- 

ating more data and it is our hope that the additional data will 

demonstrate more conclusively the utility of our criterion than 

we are able to do at this time. 

Finally, we have tried to show the interaction term F12 as 

an independent but constrained strength component.  It is an 

essential variable that makes the strength tensor possible.  For 

the graphite-epoxy composite presented in this paper, the quadra- 

tic approximation of the strength criterion proposed by Hoffman 

[3] which is an improvement over Hill's    by incorporating the 
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effect of internal stresses, has an interaction term so small 

(-.00007) that it can be treated as ?.erc.  This can be seen 

in Figure 5.  For highly anisotropic composites, the off-axis 

tensile test does not appear to be an effective way to compare 

the difference between various strength theories, which include 

the maximum stress, Hoffman and ours.  Off-axis compression data 

would be better.  A positive shear such as V in Figure 5 is the 

best. 
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APPENDIX I 

CONTRACTED NOTATION 

Contracted notation is an artificial system which offers 

the advantages of 

1. one half of the number of indices, i.e., one index 

for second-rank; and two, for 4th-rank tensors; and 

2. retaining the range and summation conventions of the 

indicial notation. 

But in the process of simplifications via the contracted nota- 

tion, several difficulties arise, 

1. there is no universal agreement as to the order of the 

off-diagonal terms, e.g., the shear stress a±2   can be 

represented by a, or a^; 

2. Multiplying factors are often required, such as 

S66 = 4S1212 

F  = 2F 
*6     12 

(66) 

where S . is the elastic compliance matrix and F. is the strength 

tensor in Equation (1).  When various factors are applied to tensoi 

components such as those on the right-hand side of Equation (66) 

the components of a contracted tensors like S66 and Fß are no 

longer tensors in the same way that engineering strain differs 

from tensorial strain by a factor of 2 in the shear components. 

It is the purpose of this Appendix to show the origins of 

the multiplying factors of a few common tensors including the 

strength tensors of this paper.  The only way to ensure reliabi- 

lity in the use of contracted notation is to do the long-hand 
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or natural notation and compare it with the result of the 

contracted notation.  The same practice is common in the use 

of indicial notation; i.e., compare indicial notation against 

the long-hand operations in terms of a coordinate system. 

Second Rank Tensors 

We would like to adopt the ordering and conversion scheme 

for stress and strain used by Love, Sokolniskoff, Green, Hearmon; 

Natural Notation 

11 

22 

33 

23 

31 

12 

32 

13 

21 

'11 

'2 2 

'33 

2e 
23 

2e 
31 

2£ 
12 

2e 

2e 

2e 

32 

13 

21 

Contracted Notation 

(67) 

The conversion system above is not followed by all authors. 

The conversion of stress maintains the tensorial property; but 

that of strain does not.  The factor of 2 on the shear strain 



components makes the strain in contracted notation engineering 

rather than tensorial strain.  Thermal expansion coefficients 

a  will have to make the same correction as strain components 
l 

in Equation ( 66 ), if the thermal and mechanical strains are 

additive in thermal stress analysis such as 

total    in ,   T 
l        ii 

(68) 

Similarly, in laminated plate analysis, it is common to assume 

e. = e? + zk. 
ill 

(69) 

Where ef is misplaced in-plane strain and k., curvature, then 
l i 

k. must also be in engineering curvature, i.e., 

2k 12 
232w 
8w3y 

(70) 

In a scalar multiplication such as strain energy in-plane stress 

and natural notation, we have with i,j = 1, 2 

W = 1   (aijeij} = I (ail£ll + a22E22 + 2012£12) 
(71) 

In contracted notation with i = 1, 2, 6 

W   =   =r o.e. 2      ii 2   (01£1   +   a2£2   +   °6e6) 
(72) 

The last 2 equations are equal if and only if the use of contracted 

notation follows that shown in Equation (66 ), i.e., the key rela- 

tion of 

2£12 = £6 (73) 
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The first scalar product in Equation (1), F^» in natural 

notation with i,j = 1, 2, 3 is: 

Fij°ij   =   FliaH   +   F22°22   +   F33°33   +   (F23   +   F32)a23 

+   (F31   +   F13)a!3   +   (F12   +   F21)012 

Where the stress is symmetrical.  The same scalar product in 

contracted notation with i = 1,...6 is 

F.CT. = F1a1 + F2a2 + F 3a g + F^ + F ..o 5 + F^ 

(74) 

(75) 

The last two equations are equal if the equivalence between the 

natural and contracted notation follows that for the strains in 

Equation (66). Since stress is symmetrical, whether or not F^ 

in Equation (74) is symmetrical is no longer distinguishable in 

Equation (75 ) ; i.e. , 

F6 " F12 + F21 
(76) 

From Equation (2) we know f--kÄ is symmetric, f is class C2 , we 

can conclude in natural notations 

F. 
3f 

ij 80 
il 

"   FijkÄakÄ   =   Fji 
(77) 

Thus in contracted notation, 

F4 = F7 = 2F23  F5 = F8 = 2F31  F6 = F9 = 2F12 
(78) 

Wince we also know from Equations (2) that Fi- is symmetric 

both strength tensors are symmetric.  We can also conclude that 
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the transformations of a., k. and F. will all follow that of 

the engineering strain.  The exact relationship for F.. will 

appear in Appendix II. 

Fourth Rank Tensors 

Using the contracted notation of Equation (66,67), for 

stress and strain, we can determine the multiplying factors 

of the stiffness and compliance matrix, C^ and S^ , respec- 

tively.  In their natural forms: 

aij = Cijk£Ek£ 
Eij = Sijk&°k2, 

(79) 

Where i,j = 1,2,3.  In matrix form, we have 

11 

22 

33 

23 

31 

12 

32 

13 

21 

= CCijk*] 

11 

'22 

33 

2 3 

31 

12 

32 

13 

12 

(80) 



-47- 

If both stress and strain are symmetric, we have 

11 

22 

33 

23 

31 

12 

r 2C LijkJl I   ijkit 

CijkÄ  i    ijk£ 

11 

22 

33 

'23 

31 

12 

^ijki^ \e 

11 

22 

:33l 

231 

;3l| 

;12 

(81) 

If contracted notation in Equation (A-2) is introduced, we 

have 

w 

[cijk*] 
(82) 

Note that the factor of 2 in the last 3 columns of C^^ in 

Equation ( 81 ) due to the symmetry of strain is cancelled by 

the engineering strain used in the contracted notation. 

We can write the equivalent of ( 80 ) for S£jk£.  When 

stress and strain are symmetric, we have in place of ( 81 ) 
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e    \ 
11 

22 

33 

^23| 

'31 

12 

'ijki 

Si jkÄ. 

_* I 11 

'ijkü 

2 S . ., „ 

22 

33 

23 

31 

12 

(83) 

If we now introduce contracted notation of Equation ( 67 ), 

we have 

sijia      ;     2 sijka 

2Siik£      !     usijk^ 

(84) 

Note the multiplying factors of 1, 2 and 4 applied to the four 

equal 3 x 3 submatrices of S.j]<r  These factors are contributed 

equally from two sources; viz., symmetrical stress and engineering 

strain. 

The scalar product of the quadratic term in Equation (1) 

should be the same as the strain energy 

=   i   (a. .e . . )   =   0  S..Hc.<JkJ 2 i]    l] 2      i]KJt   lj    K- 

in   Equation   (  71 ) 

or 

(85) 

(86) 
Fijk£öij0k£ 
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In contracted notation, we have 

w = i o. £•. = r S..U.Ö. 
2  i i   2  1] i D 

(87) 

or 

f = F. .o.o. (88) 

If we expand ( 85 ) and ( 87 ) and match each term, we will get 

the same multiplying factors as those shown in Equation ( 84 ). 

The same multiplying factors will apply to F^^ as follows: 

Natural Notation 

Fllll' F2222' F3333 

F2233' F3311' F1122 

2F1123' 2F1131' 2F1112 

9F       9F       2F 
2223'   2231'   2212 

2F3323' 2F3331' 2F3312 

UF        UF        4F Ht2323'   3131'   1212 

M'F2331' 4F3112' 4F1223 

Contracted Notation 

F     F     F 
11'  22*  33 

F23' F31' F12 

F14' F15' F16 

F24' F25' F26 

F34' F35' F36 

F     F     F 1 44'  55'  66 

F45' F56' F64 

(89) 

Thus, F.. in contracted form will transform like S. . with proper 

multiplying factors in Equation ( 89 ) or ( 84 ).  The exact 

relations will be listed in Appendix II. 
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APPENDIX II 

TRANSFORMATION RELATIONS OF STRENGTH TENSORS 

Transformation relations for tensors can be expressed 

in terms of multiple angles if the following trignometric iden- 

tities are used: 

Constant cos 20 sin 26 cos 46 sin 46 

2 
m 

\H« \J  A» kj *» *-* ** v 

1/2 1/2 0 0 0 

2 
n 1/2 -1/2 0 0 0 

2  2 
m -n 0 1 0 0 0 

mn 0 0 1/2 0 0 

4 
m 3/8 1/2 0 1/8 0 

3 
m n 0 0 1/4 0 1/8 

2 2 
m n 1/8 0 0 -1/8 0 

3 
mn 0 0 1/4 0 -1/8 

4 
n 3/8 -1/2 0 1/8 0 

m +n 3/4 0 0 1/4 0 

4  4 
m -n 0 1 0 0 0 

3    3 m n-mn 0 0 0 0 1/4 

3    3 
m n+mn 0 0 1/2 0 0 

4 o 2 2 m -3m n 0 1/2 0 1/2 0 

0 2 2  4 
3m n -n 0 1/2 0 -1/2 0 

, 2  2.2 
(m -n ) 1/2 0 0 1/2 0 

(90) 

When the relations above are substituted into the classical 

transformation relations of a rotation about the 3-axis, as 

shown in Figure  8 we have the following relations.  Since 
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all components are expressed in terms of contract notation, 

the multiplying factors described in Appendix II have been 

incorporated. 

I.  Second Rank Tensor F^, 

F ' 2 

F ' r6 

V 

Constant   cos 6   sin 9   cos 29   sin 2J 

1 

0 0 

F, 

-T, 

K 
.IF 
2  6 

-2T, (91) 

V 
F ' 1 3 

where Tx = <FX t F2>/2 

T2 = (Fx - F2)/2 
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II.  Fourth Rank Tensor F,j. 

Constant   cos 29   sin 26   cos 46   sin 49 

11 

22 

12 

66 

16 

26 

13 

23 

36 

44 

55 

45 

33 

U. 

4U, 

■U, 

2U, 

2U, 

2U( 

■2Uf 

0 

0 

-u, 

■4U, 

2Ü, 

2U. 

■4U, 

■2U, 

2U. 

33 

1 
V2 

F36/2 
0 0 

1 -V2 "F36/2 0 0 

0 F3 6 
-2V2 0 0 

1 
W2 

r45 0 0 

1 "W2 
F45 0 0 

0 F45 W2 
0 0 

0 0 0 0 

(93) 

where U±   = (3F1]L + 3F22 + 2F12 + Fg6)/8 

(rix - F22)/2 

<F11 + F22 " 2F12 " F66)/8 

(F11 + F22 + 6F12 - F66)/8 

(F11 + F22 " 2F12 + F66)/8 
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(F        +   F      )/4 1   16 26" 

(F        -   F      )/4 W16 26;/ 

Vl   =   (F13   +   F23)/2 

V2   =   (F13   "   F23)/2 

Wl   =   (F44   +   F55)/2 

W2   =   (V   "   F55)/2 

The remaining 8 components of F.. are those which appeared as 

zero in Equation (7b).  They can also be expressed in terms 

of multiple angles.  In the case of the rotation about the 3- 

axis, these components are sine and cosine functions of 6 and 

38.  For odd-multiple angles, there are no constant terms and 

thus no invariants associated with these particular transfor- 

mations.  Since these components are not frequently encountered 

in the study of composites, we will not show them here. 

The invariants associated with these transformations are 

Tx and F3 for F£; and l^, U^, V±, Wx and F33 for F±^- Invar- 

iant U  is not independent and it can be expressed by 

W5   = 2(U1 " V 
(,9M 

These invariants are arranged in matrix form in Equation (13)< 
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Fo(e)«F,'(6 + 90o) 

Fig. 3   -   Transformation of strength tensor F. for a graphite-epoxy composite system. 

Invariant T, represents the average value of the area under the F. ' curve. 
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SENSITIVITY OF F12 

Fig. 5   -   Effect of F,    on the combined-stress test data for graphite-epoxy composite 

The bounds of F]2 are shown.  Quadratic approximations by Hill        and 

HoffmanC8] correspond to essentially zero value for ?u in this Figure. 
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UPPER BOUND F12 

 LOWER BOUND F, 12 

(a) 

 MAX STRESS 

(b) 

Fig. 6   -   Off-axis uniaxial strength of graphite-epoxy composite 

(a) Upper and lower bound of our theory and experimental data. 

(b) Dashed lines, the maximum stress theory. 
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(O <b> 
Fig. 7  -   Off-axis shear strength of graphite-epoxy composite 

(a) Upper and lower bound of our theory and experimental data 

from tubular specimens. 

(b) Dashed lines, the maximum stress theory- 
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